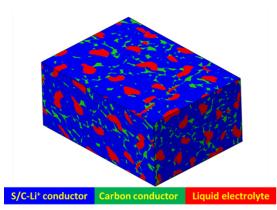
Development of High-Energy Lithium-Sulfur Batteries

U.S. DEPARTMENT OF

ENERGY

Energy Efficiency &
Renewable Energy


PI/Co-PI: Dongping Lu/Jun Liu (PNNL)

Objective:

- Develop high-energy lithium-sulfur (Li-S) batteries.
- Improve the performance of sulfur cathodes at both high mass loading and lean electrolyte conditions.
- Use advanced techniques to understand fundamental reaction mechanism in Li-S batteries.

Impact:

 Li-S batteries have potentially 2-3 times higher energy than that of state-of-the-art Li-ion batteries at a largely reduced cost. If successful, the proposed work will accelerate the market penetration of long-range electrical vehicles (EV), required by the EV Everywhere Grand Challenge proposed by DOE/EERE. To extend cycle life of high-loading sulfur cathodes through a hybrid-Li⁺-conductor electrode design

■ The hybrid-Li⁺-conductor electrode design will be employed to address key challenges of low Li⁺ conductivity of sulfur/Lisulfide, polysulfide shuttle, and limited cycle life of high energy Li-S batteries.

Accomplishments:

- Delivered high-loading sulfur cathodes (>4 mg/cm²) that have high sulfur utilization (1000 mAh/g) at very low E/S ratio (< 4 μ L/mg).
- Design of a generic hybrid (ceramic-liquid) cell for focused mechanism study of cathode, and study of fundamental reasons of low sulfur utilization in high-loading electrodes.
- Developed functionalized separators to suppress polysulfide shuttle and improve interfacial stability of Li anode.
- Published 3 Papers, gave 5 presentations, and filed 2 invention disclosure for potential patent application.

FY 19 Milestones:

- Demonstration of high Li⁺ conductive sulfur cathodes enabled by Li⁺ conductors with r.t. conductivity > 1 mS/cm.
- Electrode preparation method for S/Li⁺-conductor cathodes with S loading > 4 mg/cm² and S content >75 wt. %.
- Complete electrode optimization for low porosity sulfur electrodes (electrode density >1 g/cm³).
- Complete electrochemical study of the S/Li⁺-conductor cathodes (> 4 mg/cm²) at low E/S ratio (<3 μL/mg).

FY19 Deliverables:

High energy sulfur cathode (> 4mg/cm², >wt.75% S, and >1 g/cm³); quarterly/annual reports.

Funding: FY19: \$400k, FY18: \$400K, FY17: \$400K